Oracle中的每条SQL语句在执行之前都需要经过解析,解析分为硬解析和软解析。在Oracle中存在两种类型的SQL语句,一类为DDL语句(数据定义语言),他们是从来不会共享使用的,也就是每次执行都需要进行硬解析。还有一类是DML语句(数据操纵语言),他们会根据情况要么进行硬解析,要么进行软解析。
DDL: CREATE,DROP,ALTER
DML: INSERT,UPDATE,DELETE,SELECT
一、SQL执行过程
Oracle对SQL语句进行几个步骤的处理过程:
1.语法检查(syntax check):检查此SQL的拼写是否符合语法。
2.语义检查(semantic check):诸如检查SQL语句中的访问对象是否存在及该用户是否具备相应的权限。
3.对SQL语句进行解析(parse):利用内部算法对SQL进行解析,生成解析树(parse tree)及执行计划(execution plan)。
4.执行SQL,返回结果(execute and return)。
二、执行过程详解
1、语法检查
判断一条SQL语句的语法是否符合SQL的规范,比如执行:
SQL> selet * from emp;
我们就可以看出由于select关键字少了一个“c”,这条语句就无法通过语法检查步骤了。
2、语义检查
语法正确的SQL语句在解析的第二个步骤就是判断该SQL语句所访问的表及列是否准确?用户是否有权限访问或更改相应的表或列?比如如下语句:
SQL> select * from emp;
select * from emp
*
第 1 行出现错误:
ORA-00942: 表或视图不存在
由于查询用户没有可供访问的emp对象,因此该SQL语句无法通过语义检查。
3、解析(Parse)
(1)、Parse主要分为三种:
l Hard Parse(硬解析)
l Soft Parse(软解析)
l Soft Soft Parse(有些资料中并没有将这个算在其中)
Hard Parse:就是上面提到的对提交的SQL完全重新从头进行解析,当在Shared Pool中找不到时候将会进行此操作。总共有以下5个步骤:
1:语法分析
2:权限与对象检查
3:在共享池中检查是否有完全相同的之前完全解析好的。如果存在,直接跳过4和5,运行SQL,此时算soft parse。
4:选择执行计划
5:产生执行计划
注:创建解析树、生成执行计划对于sql的执行来说是开销昂贵的动作,所以,应当极力避免硬解析,尽量使用软解析。这就是在很多项目中,倡导开发设计人员对功能相同的代码要努力保持代码的一致性,以及要在程序中多使用绑定变量的原因。
Soft Parse:就是如果在Shared Pool中找到了与之完全相同的sql解析好的结果,会跳过Hard Parse中的后面的两个步骤。
Soft Soft Parse:实际上是当设置了session_cursor_cache这个参数之后,Cursor就直接Cache在当前Session的PGA中的,在解析的时候只需要对其语法分析、权限对象分析之后就可以转到PGA中查找了,如果发现完全相同的Cursor,就可以直接去取结果了,也就是实现了Soft Soft Parse。
(2)、解析的步骤可以分为两个步骤
1)验证SQL语句是否完全一致
在这个步骤中,Oracle将会对传递进来的SQL语句使用HASH函数运算得出HASH值,再与共享池中现有语句的HASH值进行比较看是否一一对应。现有数据库中SQL语句的HASH值我们可以通过访问v$sql、v$sqlarea、v$sqltext等数据字典中的HASH_VALUE列查询得出。
如果SQL语句的HASH值一致,那么Oracle事实上还需要对SQL语句的语义进行再次检测,以决定是否一致。那么为什么Oracle需要再次对语句文本进行检测呢?不是SQL语句的HASH值已经对应上了?事实上就算是SQL语句的HASH值已经对应上了,并不能说明这两条SQL语句就已经可以共享了。
例如:假如用户SYS有自己的一张表EMP,他要执行查询语句:select * from emp;用户SYSTEM也有一张EMP表,同样要查询select * from emp;这样他们两条语句在文本上是一模一样的,他们的HASH值也会一样,但是由于涉及到查询的相关表不一样,他们事实上是无法共享的。
SQL> conn / as sysdba
已连接。
SQL> show user
USER 为 "SYS"
SQL> create table emp(x int);
表已创建。
SQL> select * from emp;
未选定行
SQL> conn system/Test1234
已连接。
SQL> create table emp(x int);
表已创建。
SQL> select * from emp;
未选定行
SQL> set linesize 300
SQL> select address,hash_value,executions,sql_text from v$sql where upper(sql_text) like 'SELECT * FROM EMP%';
ADDRESS HASH_VALUE EXECUTIONS SQL_TEXT
------ ---------- ---------- -----------------------------
2F563A90 1745700775 1 select * from emp
2F563A90 1745700775 1 select * from emp
从结果可以看到这两个查询的语句文本和HASH值都是一样的,但是由于查询的对象不同,是无法共享的,不同情况的语句还是需要硬解析的。因此在检查共享池共同SQL语句的时候,是需要根据具体情况而定的。
可以进一步查询v$sql_shared_cursor以得知SQL为何不能共享的原因:
SQL> select address,auth_check_mismatch,translation_mismatch,optimizer_mismatch from v$sql_shared_cursor where address in (select address from v$sql where upper(sql_text) like 'SELECT * FROM EMP%');
ADDRESS A T O
-------- - - -
2F563A90 N N N
2F563A90 Y Y N
TRANSLATION_MISMATCH表示SQL游标涉及到的数据对象是不同的;
AUTH_CHECK_MISMATCH表示对同样一条SQL语句转换是不匹配的。
OPTIMIZER_MISMATCH表示会话的优化器环境是不同的。
2)验证SQL语句执行环境是否相同
比如同样一条SQL语句,一个查询会话加了/*+first_rows*/的HINT,另外一个用户加/*+all_rows*/的HINT,他们就会产生不同的执行计划,尽管他们是查询同样的数据。
通过如上检查以后,如果SQL语句是一致的,那么就会重用原有SQL语句的执行计划和优化方案,也就是我们通常所说的软解析。如果SQL语句没有找到同样的副本,那么就需要进行硬解析了。
Oracle根据提交的SQL语句再查询相应的数据对象是否有统计信息。如果有统计信息的话,那么CBO将会使用这些统计信息产生所有可能的执行计划(可能多达成千上万个)和相应的Cost,最终选择Cost最低的那个执行计划。如果查询的数据对象无统计信息,则按RBO的默认规则选择相应的执行计划。这个步骤也是解析中最耗费资源的,因此我们应该极力避免硬解析的产生。至此,解析的步骤已经全部完成,Oracle将会根据解析产生的执行计划执行SQL语句和提取相应的数据。
4、执行SQL,返回结果(execute and return)
三、绑定变量
使用了Bind Var能提高性能主要是因为这样做可以尽量避免不必要的硬解析(Hard Parse)而节约了时间,同时节约了大量的CPU资源。
当一个Client提交一条SQL给Oracle后,Oracle首先会对其进行解析(Parse),然后将解析结果提交给优化器(Optimizer)来进行优化而取得Oracle认为的最优的Query Plan,然后再按照这个最优的Plan来执行这个SQL语句(当然在这之中如果只需要软解析的话会少部分步骤)。
但是,当Oracle接到 Client提交的Sql后会首先在共享池(Shared Pool)里面去查找是否有之前已经解析好的与刚接到的这一个Sql完全相同的Sql(注意这里说的是完全相同,既要求语句上的字符级别的完全相同,又要求涉及的对象也必须完全相同)。当发现有相同的以后解析器就不再对新的Sql在此解析而直接用之前解析好的结果了。这里就节约了解析时间以及解析时候消耗的CPU资源。尤其是在OLTP中运行着的大量的短小Sql,效果就会比较明显了。因为一条两条Sql的时间可能不会有多少感觉,但是当量大了以后就会有比较明显的感觉了。
转自Dave:http://blog.csdn.net/tianlesoftware/article/details/5458896