1. 进程的有哪几种状态,状态转换图,及导致转换的事件。
状态:
1)就绪状态 进程已获得除处理机外的所需资源,等待分配处理机资源,只要分配到CPU就可执行。在某一时刻,可能有若干个进程处于该状态。
2)运行状态 占用处理机资源运行,处于此状态的进程的数目小于等于CPU的数目。
3)阻塞状态 由于进程等待某种条件(如I/O操作或进程同步),在条件满足之前无法继续执行。该事件发生前即使把处理机分配给该进程,也无法运行。
转换解释:从状态转换图中,存在四种状态转换。
当进程调度程序从就绪队列中选取一个进程投入运行时引起转换1;
正在执行的进程如因时间片用完而被暂停执行就会引起转换2;
正在执行的进程因等待的事件尚未发生而无法执行(如进程请求完成I/O)会引去转换3;
当进程等待的事件发生时(如I/O完成)则会引起转换4。
事件:就绪队列非空,则一个进程的转换3会立即引去另一个进程的转换1。这是因为一个进程发生转换3意味着正在执行的进程由执行状态变为阻塞状态,这时处理机空闲,进程调度程序必然会从就绪队列中选取一个进程并将它投入运行,因此只要就绪队列非空,一个进程的转换3能立即引起一个进程的转换1。
2、什么是进程(Process)和线程(Thread)?有何区别?
进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行。
进程与应用程序的区别在于应用程序作为一个静态文件存储在计算机系统的硬盘等存储空间中,而进程则是处于动态条件下由操作系统维护的系统资源管理实体。
3. 进程通信的几种方式。
管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
有名管道 (named pipe) : 有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
信号量( semophore ) :信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
消息队列( message queue ) : 消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
信号 ( signal ) : 信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
共享内存( shared memory ) :共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。
套接字( socket ) : 套解字也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同及其间的进程通信。
4. 线程同步几种方式。(一定要会写生产者、消费者问题,完全消化理解)
临界区(CriticalSection):通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。
事件(Event):为协调共同对一个共享资源的单独访问而设计的。
互斥量(Mutex):为控制一个具有有限数量用户资源而设计。
信号量(Semaphore):用来通知线程有一些事件已发生,从而启动后继任务的开始。
生产者、消费者问题
Var mutex,empty,full:semaphore:=1,n,0; // 定义三个信号量
buffer:array[0,...,n-1]of item; // 定义缓冲池,容量为n
in,out:integer:=0,0;
begin
parbegin
proceducer:begin // 生产者
repeat
producer an item nextp; // 生产一个产品 .
wait(empty); // 申请一个空缓冲区
wait(mutex); // 申请缓冲池的使用权
buffer(in):=nextp; // 将产品放入缓冲池中
in:=(in+1)mod n; // 下一个空缓冲区地址
signal(mutex); //释放缓冲池使用权
signal(full); // 释放一个满缓冲区
until false;
end
consumer:begin
repeat
wait(full);
wait(mutex);
nextc:=buffer(out);
out:=(out+1)mod n;
signal(mutex);
signal(empty);
consumer the item in nextc;
until false;
end
parend
end
nextp 应该是next proceducer的意思吧
nextc 应该是next consumer
信号量:只支持两种操作,wait()和signal(),也叫做P、V操作,这两个操作是
原子操作,不会被打断。信号量机制有以下几种:
1.整型信号量--------------------一个整数,只能由PV操作对其加减
2.记录型信号量------------------在1的基础上种了一个链表,记录请求该资源的线程,解决1中没有让权等待的问题
3.AND信号量---------------------1和2只是对一个资源,而这个机制能解决一次请求多个资源的情况
4.一般信号量--------------------这是最一般的信号量机制,能够表示以上几种,表示方法也比较特殊,见操作系统
3和4又属于信号量集机制。
4. 死锁的概念,导致死锁的原因.
死锁
主要原因(1) 因为系统资源不足。(2) 进程运行推进的顺序不合适。(3) 资源分配不当等。
5. 导致死锁的四个必要条件。
产生死锁的四个必要条件:
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。
6. 处理死锁的四个方式。
1)忽略该问题。例如鸵鸟算法,该算法可以应用在极少发生死锁的的情况下。为什么叫鸵鸟算法呢,(鸵鸟策略)
2)检测死锁并且恢复。(检测与解除策略)
3)仔细地对资源进行动态分配,以避免死锁。(避免策略)
4)通过破除死锁四个必要条件之一,来防止死锁产生。(预防策略)
7. 预防死锁的方法、避免死锁的方法。通过破除死锁四个必要条件之一,来预防死锁产生,有两种方法,一种是当其申请的资源得不到满足时,也必须放弃其原先占有的资源;另一种方法是只适用于申请资源的进程优先级比占有该资源的进程优先级高时,如果一个进程申请的资源被其它进程占用,而申请进程的优先级较高,那么它可以强迫占有资源的进程放弃。
仔细地对资源进行动态分配,以避免死锁。
8. 进程调度算法。(周转时间 = 程序结束时间 -- 开始服务时间、带权周转时间= 周转时间 / 要求服务时间)
先来先服务(First Come First Service,FCFS)调度算法按照进程进入就绪队列的先后顺序选择可以占用处理器的进程。这是一种不可抢占方式的调度算法,优点是实现简单,缺点是后来的进程等待CPU的时间较长。它现今主要用作辅助调度法;例如结合在优先级调度算法中使用,当有两个最高优先级的进程时,则谁先来,谁就先被调度。
短执行进程优先算法(Shortest Process First,SPF)就是从就绪队列中选择一个CPU执行时间预期最短的进程,将处理器分配给它。虽然较公平,但实现难度较大,因为要准确预定下一个进程的CPU执行周期是很困难的。
最高优先级优先(Highest Priority First,HPF)调度算法的核心是确定进程的优先级。首先,系统或用户按某种原则为进程指定一个优先级来表示该进程所享有的调度优先权。确定优先级的方法较多,一般可分为两类,即静态法和动态法。静态法根据进程的静态特性,在进程开始执行之前就确定它们的优先级,一旦开始执行之后就不能改变。动态法则不然,它把进程的静态特性和动态特性结合起来确定进程的优先级,随着进程的执行过程,其优先级不断变化。
进程的静态优先级确定最基本的方法是按照进程的类型给予不同的优先级。例如,在有些系统中,进程被划分为系统进程和用户进程。系统进程享有比用户进程高的优先级;对于用户进程来说,则可以分为:I/O繁忙的进程、CPU繁忙的进程、I/O与CPU均衡的进程和其他进程等。
?对系统进程,也可以根据其所要完成的功能划分为不同的类型。例如,调度进程、I/O进程、中断处理进程、存储管理进程等。这些进程还可进一步划分为不同类型并赋予不同的优先级。例如,在操作系统中,对于键盘中断的处理优先级和对于电源掉电中断的处理优先级是不相同的。
基于静态优先级的调度算法实现简单,系统开销小,但由于静态优先级一旦确定之后,直到执行结束为止始终保持不变,从而系统效率较低,调度性能不高。现在的操作系统中,如果使用优先级调度的话,则大多采用动态优先级的调度策略。
?进程的动态优先级一般可以根据以下两个方面来确定:
? (1)根据进程占有CPU时间的长短来决定。一个进程占有处理机的时间愈长,则在被阻塞之后再次获得调度的优先级就越低。反之,其获得调度的可能性就会越大。
? (2)根据就绪进程等待CPU的时间长短来决定。一个就绪进程在就绪队列中等待的时间越长,则它获得调度选中的优先级就越高。
?由于动态优先级随时间的推移而变化,系统要经常计算各个进程的优先级,因此,系统要为此付出一定的开销。
最高优先级优先调度算法用于多道批处理系统中较好,但它使得优先级较低的进程等待时间较长,这对于分时系统中要想获得较好的响应时间是不允许的,所以在分时系统中多采用时间片轮转法来进行进程调度。
时间片轮转(Round Robin,RR)法的基本思路是让每个进程在就绪队列中的等待时间与享受服务的时间成比例。在时间片轮转法中,需要将CPU的处理时间分成固定大小的时间片,例如,几十毫秒至几百毫秒。如果一个进程在被调度选中之后用完了系统规定的时间片,但又未完成要求的任务,则它自行释放自己所占有的CPU而排到就绪队列的末尾,等待下一次调度。同时,进程调度程序又去调度当前就绪队列中的第一个进程。
?显然,轮转法只能用来调度分配一些可以抢占的资源。这些可以抢占的资源可以随时被剥夺,而且可以将它们再分配给别的进程。CPU是可抢占资源的一种。但打印机等资源是不可抢占的。由于作业调度是对除了CPU之外的所有系统硬件资源的分配,其中包含有不可抢占资源,所以作业调度不使用轮转法。在轮转法中,时间片长度的选取非常重要。首先,时间片长度的选择会直接影响到系统的开销和响应时间。如果时间片长度过短,则调度程序抢占处理机的次数增多。这将使进程上下文切换次数也大大增加,从而加重系统开销。反过来,如果时间片长度选择过长,例如,一个时间片能保证就绪队列中所需执行时间最长的进程能执行完毕,则轮转法变成了先来先服务法。时间片长度的选择是根据系统对响应时间的要求和就绪队列中所允许最大的进程数来确定的。
? 在轮转法中,加入到就绪队列的进程有3种情况,一种是分给它的时间片用完,但进程还未完成,回到就绪队列的末尾等待下次调度去继续执行。另一种情况是分给该进程的时间片并未用完,只是因为请求I/O或由于进程的互斥与同步关系而被阻塞。当阻塞解除之后再回到就绪队列。第三种情况就是新创建进程进入就绪队列。如果对这些进程区别对待,给予不同的优先级和时间片,从直观上看,可以进一步改善系统服务质量和效率。例如,我们可把就绪队列按照进程到达就绪队列的类型和进程被阻塞时的阻塞原因分成不同的就绪队列,每个队列按FCFS原则排列,各队列之间的进程享有不同的优先级,但同一队列内优先级相同。这样,当一个进程在执行完它的时间片之后,或从睡眠中被唤醒以及被创建之后,将进入不同的就绪队列。
9、什么是临界区?如何解决冲突?每个进程中访问临界资源的那段程序称为临界区,每次只准许一个进程进入临界区,进入后不允许其他进程进入。
(1)如果有若干进程要求进入空闲的临界区,一次仅允许一个进程进入;
(2)任何时候,处于临界区内的进程不可多于一个。如已有进程进入自己的临界区,则其它所有试图进入临界区的进程必须等待;
(3)进入临界区的进程要在有限时间内退出,以便其它进程能及时进入自己的临界区;
(4)如果进程不能进入自己的临界区,则应让出CPU,避免进程出现“忙等”现象。
10、说出你所知道的保持进程同步的方法?
进程间同步的主要方法有原子操作、信号量机制、自旋锁、管程、会合、分布式系统等。
11、你知道操作系统的内容分为几块吗?什么叫做虚拟内存?他和主存的关系如何?内存管理属于操作系统的内容吗?
操作系统的主要组成部分:进程和线程的管理,存储管理,设备管理,文件管理。虚拟内存是一些系统页文件,存放在磁盘上,每个系统页文件大小为4K,物理内存也被分页,每个页大小也为4K,这样虚拟页文件和物理内存页就可以对应,实际上虚拟内存就是用于物理内存的临时存放的磁盘空间。页文件就是内存页,物理内存中每页叫物理页,磁盘上的页文件叫虚拟页,物理页+虚拟页就是系统所有使用的页文件的总和。
12、什么是缓冲区溢出?有什么危害?其原因是什么?
缓冲区溢出是指当计算机向缓冲区内填充数据时超过了缓冲区本身的容量,溢出的数据覆盖在合法数据上。
危害:在当前网络与分布式系统安全中,被广泛利用的50%以上都是缓冲区溢出,其中最著名的例子是1988年利用fingerd漏洞的蠕虫。而缓冲区溢出中,最为危险的是堆栈溢出,因为入侵者可以利用堆栈溢出,在函数返回时改变返回程序的地址,让其跳转到任意地址,带来的危害一种是程序崩溃导致拒绝服务,另外一种就是跳转并且执行一段恶意代码,比如得到shell,然后为所欲为。通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,使程序转而执行其它指令,以达到攻击的目的。
造成缓冲区溢出的主原因是程序中没有仔细检查用户输入的参数
13. 内存连续分配方式采用的几种算法及各自优劣。
1) 单一连续分配 是一种最简单的存储管理方式,其优点是软件处理简单,最大缺点是存储器不能充分利用。多用于单用户微机操作系统中。
2) 动态分区分配 是多道程序环境下各种存储管理方式中最简单的一种。它将内存划分成若干个分区,在每个分区中按照连续分配方式分配给一个作业。分区形式: a) 固定分区分配:指内存在处理作业前已被划分成若干个大小不等的分区,存储管理程序根据每个作业步的最大存储量分配一个足够大的分区给它。当找不到一个足够大的分区时,则通知作业调度挑选另一作业,这种方式分配和回收内存简单,但内存利用不充分,会产生“碎片”空间。b) 可变分区分配:指内存事先并未被分区,只有当作业进入内存时,才根据作业的大小建立分区。其特点是分区的个数和大小都是可变的,但需要建立分配区表和空白区表,且表的长度是不固定的。
3) 可重定位分区分配 为使各分区中的用户程序能移到内存的一端,使碎片集中于另一端成为一个大分区,在程序执行过程中,需对作业移动过程中的与地址有关项进行调整。这种分配方法的优点是清除碎片,更大程度地利用内存空间,但必须硬件的支持,且要花费时间。