分布式 Hadoop 架构
根据用 Hadoop 进行分布式数据处理,:入门,所有 Hadoop 守护进程都在同一个主机上运行。尽管不运用 Hadoop 的并行性,这个伪分布式配置提供一种简单的方式来以最少的设置测试 Hadoop 的功能。现在,让我们使用机器集群探讨一下 Hadoop 的并行性。
根据第 1 部分,Hadoop 配置定义了让所有 Hadoop 守护进程在一个节点上运行。因此,让我们首先看一下如何自然分布 Hadoop 来执行并行操作。在一个分布式 Hadoop 设置中,您有一个主节点和一些从节点(见图 1)。
图 1. Hadoop 主从节点分解

如图 1 所示,主节点包括名称节点、从属名称节点和 jobtracker 守护进程(即所谓的主守护进程)。此外,这是您为本演示管理集群所用的节点(使用 Hadoop 实用程序和浏览器)。从节点包括 tasktracker 和数据节点(从属守护进程)。两种设置的不同之处在于,主节点包括提供 Hadoop 集群管理和协调的守护进程,而从节点包括实现 Hadoop 文件系统(HDFS)存储功能和 MapReduce 功能(数据处理功能)的守护进程。
对于该演示,在一个 LAN 上创建一个主节点和两个从节点。设置如图 2 所示。现在,我们来探讨用于多节点分布的 Hadoop 的安装和配置。
图 2. Hadoop 集群配置

为简化部署,要运用虚拟化技术,该技术有几个好处。尽管在该设置中使用虚拟化技术看不出性能优势,但是它可以创建一个 Hadoop 安装,然后为其他节点克隆该安装。为此,您的 Hadoop 集群应显示如下:在一个主机上的虚拟机监控程序上下文中将主从节点作为虚拟机(VM)运行(见图 3)。
图 3. 虚拟环境中的 Hadoop 集群配置

升级 Hadoop
在 用 Hadoop 进行分布式数据处理,第 1 部分:入门 中,我们安装了在一个节点上运行的 Hadoop 的一个特殊分布(伪配置)。在本文中,我们要更新分布式配置。如果您没有看过本系列的第 1 部分,那么请阅读第 1 部分,了解如何首先安装 Hadoop 伪配置。
在伪配置中,您没有进行任何配置,因为单个节点已经过预先配置。现在,您需要更新配置。首先,使用 update-alternatives 命令检查当前配置,如清单 1 所示。该命令告诉您,配置在使用 conf.pseudo(最高优先级)。
清单 1. 检查当前 Hadoop 配置
$ update-alternatives --display hadoop-0.20-conf hadoop-0.20-conf - status is auto. link currently points to /etc/hadoop-0.20/conf.pseudo /etc/hadoop-0.20/conf.empty - priority 10 /etc/hadoop-0.20/conf.pseudo - priority 30 Current `best' version is /etc/hadoop-0.20/conf.pseudo. $ |
下一步,通过复制现有配置(本例中为 conf.empty,如清单 1 所示)创建一个新配置:
$ sudo cp -r /etc/hadoop-0.20/conf.empty /etc/hadoop-0.20/conf.dist $ |
最后,激活并检查新配置:
清单 2. 激活并检查 Hadoop 配置
$ sudo update-alternatives --install /etc/hadoop-0.20/conf hadoop-0.20-conf \ /etc/hadoop-0.20/conf.dist 40 $ update-alternatives --display hadoop-0.20-conf hadoop-0.20-conf - status is auto. link currently points to /etc/hadoop-0.20/conf.dist /etc/hadoop-0.20/conf.empty - priority 10 /etc/hadoop-0.20/conf.pseudo - priority 30 /etc/hadoop-0.20/conf.dist - priority 40 Current `best' version is /etc/hadoop-0.20/conf.dist. $ |
现在,您有一个名为 conf.dist 的新配置,您要将其用于您的新分布式配置。此时该节点运行于一个虚拟环境中,将该节点克隆到另外两个要充当数据节点的节点中。
配置 Hadoop 以实现分布式操作
下一步是要使所有节点互联互通。这可以 /etc/hadoop-0.20/conf.dist/ 中的两个名为 masters 和 slaves 的文件中实现。本例中的三个节点的 IP 地址是静态分配的,如清单 3 所示(来自 /etc/hosts):
清单 3. 该设置的 Hadoop 节点(/etc/hosts)
master 192.168.108.133 slave1 192.168.108.134 slave2 192.168.108.135 |
因此,在主节点上,更新 /etc/hadoop-0.20/conf.dist/masters 来确定主节点,如下所示:
master |
然后在 /etc/hadoop-0.20/conf.dist/slaves 中确定从节点, 其中包括以下两行:
slave1 slave2 |
接下来,从每个节点上,将 Secure Shell (ssh) 连接到所有其他节点,确保 pass-phraseless ssh 在运行。所有这些文件(masters,slaves)都由本系列第 1 部分中使用过的 Hadoop 启动和停止工具使用。
下一步,在 /etc/hadoop-0.20/conf.dist 子目录中继续进行 Hadoop 配置。以下变更需要应用于所有节点(主节点和从节点),如同 Hadoop 文档中所定义的。首先,在 core-site.xml 文件(清单 4)中确定 HDFS 主节点,它定义名称节点的主机和端口(注意主节点的 IP 地址的使用)。core-site.xml 文件定义 Hadoop 的核心属性。
清单 4. 在 core-site.xml 中定义 HDFS 主节点
|
下一步,确认 MapReduce jobtracker。jobtracker 位于其自己的节点上,但对于本配置,将其放在主节点上,如清单 5 所示。mapred-site.xml 文件包含 MapReduce 属性。
清单 5. 在 mapred-site.xml 中定义 MapReduce jobtracker
|
最后,定义默认复制因子(清单 6)。该值定义将创建的副本数,一般小于 3。在本例中,将其定义为 2(数据节点的数量)。该值在包含 HDFS 属性的 hdfs-site.xml 中定义。
清单 6. 在 hdfs-site.xml 中定义默认数据副本
|
配置项如 清单 4 所示,分布式设置所需的元素见 清单 5 和清单 6。Hadoop 在这里提供大量配置选项,支持您按需定制整个环境。
完成配置之后,下一步是要格式化名称节点(HDFS 主节点)。对于该操作,使用 hadoop-0.20 实用程序指定名称节点和操作(-format):
清单 7. 格式化名称节点
user@master:~# sudo su - root@master:~# hadoop-0.20 namenode -format 10/05/11 18:39:58 INFO namenode.NameNode: STARTUP_MSG: /************************************************************ STARTUP_MSG: Starting NameNode STARTUP_MSG: host = master/127.0.1.1 STARTUP_MSG: args = [-format] STARTUP_MSG: version = 0.20.2+228 STARTUP_MSG: build = -r cfc3233ece0769b11af9add328261295aaf4d1ad; ************************************************************/ 10/05/11 18:39:59 INFO namenode.FSNamesystem: fsOwner=root,root 10/05/11 18:39:59 INFO namenode.FSNamesystem: supergroup=supergroup 10/05/11 18:39:59 INFO namenode.FSNamesystem: isPermissionEnabled=true 10/05/11 18:39:59 INFO common.Storage: Image file of size 94 saved in 0 seconds. 10/05/11 18:39:59 INFO common.Storage: Storage directory /tmp/hadoop-root/dfs/name has been successfully formatted. 10/05/11 18:39:59 INFO namenode.NameNode: SHUTDOWN_MSG: /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at master/127.0.1.1 ************************************************************/ root@master:~# |
格式化名称节点之后,就可以启动 Hadoop 守护进程了。可以对第 1 部分中的伪分布式配置执行同样的操作,但进程为分布式配置完成同样的工作。注意,这里的代码启动名称节点和从属名称节点(正如 jps 命令所指示):
清单 8. 启动名称节点
root@master:~# /usr/lib/hadoop-0.20/bin/start-dfs.sh starting namenode, logging to /usr/lib/hadoop-0.20/bin/../logs/hadoop-root-namenode-mtj-desktop.out 192.168.108.135: starting datanode, logging to /usr/lib/hadoop-0.20/bin/../logs/hadoop-root-datanode-mtj-desktop.out 192.168.108.134: starting datanode, logging to /usr/lib/hadoop-0.20/bin/../logs/hadoop-root-datanode-mtj-desktop.out 192.168.108.133: starting secondarynamenode, logging to /usr/lib/hadoop-0.20/logs/hadoop-root-secondarynamenode-mtj-desktop.out root@master:~# jps 7367 NameNode 7618 Jps 7522 SecondaryNameNode root@master:~# |
现在,如果使用 jps 节点检测其中一个从节点(数据节点),您会看到每个节点上都有一个数据节点守护进程:
清单 9. 检测其中一个从节点上的数据节点
root@slave1:~# jps 10562 Jps 10451 DataNode root@slave1:~# |
下一步是要启动 MapReduce 守护进程(jobtracker 和 tasktracker)。如 清单 10 所示执行该操作。注意,脚本启动主节点上的 jobtracker(正如配置所定义的;参见 清单 5)和每个从节点上的 tasktrackers。主节点上的一个 jps 命令显示 jobtracker 正在运行。
清单 10. 启动 MapReduce 守护进程
root@master:~# /usr/lib/hadoop-0.20/bin/start-mapred.sh starting jobtracker, logging to /usr/lib/hadoop-0.20/logs/hadoop-root-jobtracker-mtj-desktop.out 192.168.108.134: starting tasktracker, logging to /usr/lib/hadoop-0.20/bin/../logs/hadoop-root-tasktracker-mtj-desktop.out 192.168.108.135: starting tasktracker, logging to /usr/lib/hadoop-0.20/bin/../logs/hadoop-root-tasktracker-mtj-desktop.out root@master:~# jps 7367 NameNode 7842 JobTracker 7938 Jps 7522 SecondaryNameNode root@master:~# |
最后,使用 jps 检查一个从节点。这里您可以看到,一个 tasktracker 守护进程将数据节点守护进程联接到每个从数据节点上:
清单 11. 检测其中一个从节点上的数据节点
root@slave1:~# jps 7785 DataNode 8114 Jps 7991 TaskTracker root@slave1:~# |
启动脚本、节点和启动的守护进程之间的关系如图 4 所示。如您所见,start-dfs 脚本启动名称节点和数据节点,而 start-mapred 脚本启动 jobtracker 和 tasktrackers。
图 4. 每个节点的启动脚本和守护进程的关系

测试 HDFS
既然 Hadoop 已经开始在整个集群中运行了,您可以运行一些测试来确保其正常运作(见清单 12)。首先,通过 hadoop-0.20 实用程序发出一个文件系统命令(fs),并请求一个 df(disk free)操作。与在 Linux? 中一样,该命令仅确定特定设备的已用空间和可用空间。因此,对于新格式化的文件系统,就没有已用空间。下一步,在 HDFS 的根上执行一个 ls 操作,创建一个子目录,列出其内容,并删除它。最后,在 hadoop-0.20 实用程序内,您可以使用 fsck 命令在 HDFS 上执行一个 fsck(文件系统检查)。这一切 — 以及各种其他信息(比如检测到两个数据节点)— 都告诉您文件系统是正常的。
清单 12. 检查 HDFS
root@master:~# hadoop-0.20 fs -df File system Size Used Avail Use% / 16078839808 73728 3490967552 0% root@master:~# hadoop-0.20 fs -ls / Found 1 items drwxr-xr-x - root supergroup 0 2010-05-12 12:16 /tmp root@master:~# hadoop-0.20 fs -mkdir test root@master:~# hadoop-0.20 fs -ls test root@master:~# hadoop-0.20 fs -rmr test Deleted hdfs://192.168.108.133:54310/user/root/test root@master:~# hadoop-0.20 fsck / .Status: HEALTHY Total size: 4 B Total dirs: 6 Total files: 1 Total blocks (validated): 1 (avg. block size 4 B) Minimally replicated blocks: 1 (100.0 %) Over-replicated blocks: 0 (0.0 %) Under-replicated blocks: 0 (0.0 %) Mis-replicated blocks: 0 (0.0 %) Default replication factor: 2 Average block replication: 2.0 Corrupt blocks: 0 Missing replicas: 0 (0.0 %) Number of data-nodes: 2 Number of racks: 1 The filesystem under path '/' is HEALTHY root@master:~# |
执行一个 MapReduce 作业
下一步是执行一个 MapReduce 作业,以验证整个设置运作正常(见清单 13)。该进程的第一步是要引入一些数据。因此,首先创建一个目录来容纳您的输入数据(称为 input),创建方式是使用 hadoop-0.20 实用程序的 mkdir 命令。然后,使用 hadoop-0.20 的 put 命令将两个文件放到 HDFS 中。您可以使用 Hadoop 实用程序的 ls 命令检查输入目录的内容。
清单 13. 生成输入数据
root@master:~# hadoop-0.20 fs -mkdir input root@master:~# hadoop-0.20 fs -put \ /usr/src/linux-source-2.6.27/Doc*/memory-barriers.txt input root@master:~# hadoop-0.20 fs -put \ /usr/src/linux-source-2.6.27/Doc*/rt-mutex-design.txt input root@master:~# hadoop-0.20 fs -ls input Found 2 items -rw-r--r-- 2 root supergroup 78031 2010-05-12 14:16 /user/root/input/memory-barriers.txt -rw-r--r-- 2 root supergroup 33567 2010-05-12 14:16 /user/root/input/rt-mutex-design.txt root@master:~# |
下一步,启动 wordcount MapReduce 作业。与在伪分布式模型中一样,指定输入子目录(包含输入文件)和输出目录(不存在,但会由名称节点创建并用结果数据填充):
清单 14. 在集群上运行 MapReduce wordcount 作业
root@master:~# hadoop-0.20 jar \ /usr/lib/hadoop-0.20/hadoop-0.20.2+228-examples.jar wordcount input output 10/05/12 19:04:37 INFO input.FileInputFormat: Total input paths to process : 2 10/05/12 19:04:38 INFO mapred.JobClient: Running job: job_201005121900_0001 10/05/12 19:04:39 INFO mapred.JobClient: map 0% reduce 0% 10/05/12 19:04:59 INFO mapred.JobClient: map 50% reduce 0% 10/05/12 19:05:08 INFO mapred.JobClient: map 100% reduce 16% 10/05/12 19:05:17 INFO mapred.JobClient: map 100% reduce 100% 10/05/12 19:05:19 INFO mapred.JobClient: Job complete: job_201005121900_0001 10/05/12 19:05:19 INFO mapred.JobClient: Counters: 17 10/05/12 19:05:19 INFO mapred.JobClient: Job Counters 10/05/12 19:05:19 INFO mapred.JobClient: Launched reduce tasks=1 10/05/12 19:05:19 INFO mapred.JobClient: Launched map tasks=2 10/05/12 19:05:19 INFO mapred.JobClient: Data-local map tasks=2 10/05/12 19:05:19 INFO mapred.JobClient: FileSystemCounters 10/05/12 19:05:19 INFO mapred.JobClient: FILE_BYTES_READ=47556 10/05/12 19:05:19 INFO mapred.JobClient: HDFS_BYTES_READ=111598 10/05/12 19:05:19 INFO mapred.JobClient: FILE_BYTES_WRITTEN=95182 10/05/12 19:05:19 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=30949 10/05/12 19:05:19 INFO mapred.JobClient: Map-Reduce Framework 10/05/12 19:05:19 INFO mapred.JobClient: Reduce input groups=2974 10/05/12 19:05:19 INFO mapred.JobClient: Combine output records=3381 10/05/12 19:05:19 INFO mapred.JobClient: Map input records=2937 10/05/12 19:05:19 INFO mapred.JobClient: Reduce shuffle bytes=47562 10/05/12 19:05:19 INFO mapred.JobClient: Reduce output records=2974 10/05/12 19:05:19 INFO mapred.JobClient: Spilled Records=6762 10/05/12 19:05:19 INFO mapred.JobClient: Map output bytes=168718 10/05/12 19:05:19 INFO mapred.JobClient: Combine input records=17457 10/05/12 19:05:19 INFO mapred.JobClient: Map output records=17457 10/05/12 19:05:19 INFO mapred.JobClient: Reduce input records=3381 root@master:~# |
最后一步是探索输出数据。由于您运行了 wordcount MapReduce 作业,结果是一个文件(从已处理映射文件缩减而来)。该文件包含一个元组列表,表示输入文件中找到的单词和它们在所有输入文件中出现的次数:
清单 15. 检测 MapReduce 作业的输出
root@master:~# hadoop-0.20 fs -ls output Found 2 items drwxr-xr-x - root supergroup 0 2010-05-12 19:04 /user/root/output/_logs -rw-r--r-- 2 root supergroup 30949 2010-05-12 19:05 /user/root/output/part-r-00000 root@master:~# hadoop-0.20 fs -cat output/part-r-00000 | head -13 != 1 "Atomic 2 "Cache 2 "Control 1 "Examples 1 "Has 7 "Inter-CPU 1 "LOAD 1 "LOCK" 1 "Locking 1 "Locks 1 "MMIO 1 "Pending 5 root@master:~# |
回页首
Web 管理界面
尽管 hadoop-0.20 实用程序的功能极其丰富,但有时使用一个 GUI 会更方便。在执行文件系统检测时,您可以通过 http://master:50070 链接到名称节点,通过 http://master:50030 连接到 jobtracker 。您可以通过名称节点检测 HDFS,如图 5 所示,在这里您检测输入目录(包含输入数据 — 见上面 清单 13)。
图 5. 通过名称节点检测 HDFS

通过 jobtracker,您可以检测运行中或已完成的作业。在图 6 中,您可以看到对最后一个作业的检测(来自 清单 14)。该图展示了作为 Java 存档(JAR)请求的输出发出的各种数据,以及任务的状态和数量。注意,这里执行了两个映射任务(每个输入文件一个映射)和一个缩减任务(用于缩减两个映射输入)。
图 6. 检查一个已完成作业的状态

最后,您可以通过名称节点检查数据节点的状态。名称节点主页确定活动节点和死节点(作为链接)的数量,且允许您进一步检测它们。图 7 所示的页面显示了活动数据节点以及每个节点的统计数据。
图 7. 检查活动数据节点的状态

通过名称节点和 jobtracker Web 界面,可以查看许多其他视图,但出于简洁,只显示该样例集。在名称节点和 jobtracker Web 页面内,您会找到大量链接,从而引导您获取有关 Hadoop 配置和操作的其他信息(包括运行时日志)。