kafka+storm+hbase实现计算WordCount。
(1)表名:wc
(2)列族:result
(3)RowKey:word
(4)Field:count
1、 解决:
( 1 )第一步:首先准备 kafka 、 storm 和 hbase 相关 jar 包。 依赖如下 :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175 |
4.0
.
0
0.0
.
1
-SNAPSHOT
0.9
.
3
0.9
.
3
10
0.8
.
1.1
0.99
.
2
2.5
.
0
2.5
.
0
1.7
7
.0_51\lib\tools.jar
//repo1.maven.org/maven2/
false
true
//clojars.org/repo/
true
true
//scala-tools.org/repo-releases
true
true
//conjars.org/repo/
true
true
3.1
1.6
1.6
8
true
true
package
|
(2) 将 kafka 发来的数据通过 levelSplit 的 bolt 进行分割处理,然后再发送到下一个 Bolt 中。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 |
package
com.kafka.spout; import
java.util.regex.Matcher; import
java.util.regex.Pattern; import
backtype.storm.topology.BasicOutputCollector; import
backtype.storm.topology.OutputFieldsDeclarer; import
backtype.storm.topology.base.BaseBasicBolt; import
backtype.storm.tuple.Fields; import
backtype.storm.tuple.Tuple; import
backtype.storm.tuple.Values; public
class
LevelSplit
extends
BaseBasicBolt {
public
void
execute(Tuple tuple, BasicOutputCollector collector) {
String words = tuple.getString(
0
).toString();
//the cow jumped over the moon
String []va=words.split(
" "
);
for
(String word : va)
{
collector.emit(
new
Values(word));
}
}
public
void
declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(
new
Fields(
"word"
));
} } |
(3) 将levelSplit 的Bolt 发来的数据到levelCount 的Bolt 中进行计数处理,然后发送到hbase (Bolt )中。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 |
package
com.kafka.spout; import
java.util.HashMap; import
java.util.Map; import
java.util.Map.Entry; import
backtype.storm.topology.BasicOutputCollector; import
backtype.storm.topology.OutputFieldsDeclarer; import
backtype.storm.topology.base.BaseBasicBolt; import
backtype.storm.tuple.Fields; import
backtype.storm.tuple.Tuple; import
backtype.storm.tuple.Values; public
class
LevelCount
extends
BaseBasicBolt {
Map
new
HashMap
public
void
execute(Tuple tuple, BasicOutputCollector collector) {
// TODO Auto-generated method stub
String word = tuple.getString(
0
);
Integer count = counts.get(word);
if
(count ==
null
)
count =
0
;
count++;
counts.put(word, count);
for
(Entry
//sum += e.getValue();
System.out.println(e.getKey()
+
"----------->"
+e.getValue());
}
collector.emit(
new
Values(word, count));
}
public
void
declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
declarer.declare(
new
Fields(
"word"
,
"count"
));
} } |
(4) 准备连接 kafka 和 hbase 条件以及 设置整个拓扑结构并且提交拓扑。代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77 |
package
com.kafka.spout; import
java.util.HashMap; import
java.util.Map; import
com.google.common.collect.Maps; //import org.apache.storm.guava.collect.Maps; import
backtype.storm.Config; import
backtype.storm.LocalCluster; import
backtype.storm.StormSubmitter; import
backtype.storm.generated.AlreadyAliveException; import
backtype.storm.generated.InvalidTopologyException; import
backtype.storm.spout.SchemeAsMultiScheme; import
backtype.storm.topology.TopologyBuilder; import
backtype.storm.tuple.Fields; import
backtype.storm.utils.Utils; import
storm.kafka.BrokerHosts; import
storm.kafka.KafkaSpout; import
storm.kafka.SpoutConfig; import
storm.kafka.ZkHosts; public
class
StormKafkaTopo {
public
static
void
main(String[] args) {
BrokerHosts brokerHosts =
new
ZkHosts(
"zeb,yjd,ylh"
);
SpoutConfig spoutConfig =
new
SpoutConfig(brokerHosts,
"yjd"
,
"/storm"
,
"kafkaspout"
);
Config conf =
new
Config();
spoutConfig.scheme =
new
SchemeAsMultiScheme(
new
MessageScheme());
SimpleHBaseMapper mapper =
new
SimpleHBaseMapper();
mapper.withColumnFamily(
"result"
);
mapper.withColumnFields(
new
Fields(
"count"
));
mapper.withRowKeyField(
"word"
);
Map
map.put(
"hbase.rootdir"
,
"hdfs://zeb:9000/hbase"
);
map.put(
"hbase.zookeeper.quorum"
,
"zeb:2181,yjd:2181,ylh:2181"
);
// hbase-bolt
HBaseBolt hBaseBolt =
new
HBaseBolt(
"wc"
, mapper).withConfigKey(
"hbase.conf"
);
conf.setDebug(
true
);
conf.put(
"hbase.conf"
, map);
TopologyBuilder builder =
new
TopologyBuilder();
builder.setSpout(
"spout"
,
new
KafkaSpout(spoutConfig));
builder.setBolt(
"split"
,
new
LevelSplit(),
1
).shuffleGrouping(
"spout"
);
builder.setBolt(
"count"
,
new
LevelCount(),
1
).fieldsGrouping(
"split"
,
new
Fields(
"word"
));
builder.setBolt(
"hbase"
, hBaseBolt,
1
).shuffleGrouping(
"count"
);
if
(args !=
null
&& args.length >
0
) {
//提交到集群运行
try
{
StormSubmitter.submitTopology(args[
0
], conf, builder.createTopology());
}
catch
(AlreadyAliveException e) {
e.printStackTrace();
}
catch
(InvalidTopologyException e) {
e.printStackTrace();
}
}
else
{
//本地模式运行
LocalCluster cluster =
new
LocalCluster();
cluster.submitTopology(
"Topotest1121"
, conf, builder.createTopology());
Utils.sleep(
1000000
);
cluster.killTopology(
"Topotest1121"
);
cluster.shutdown();
}
} } |
(5) 在kafka 端用控制台生产数据,如下:
2、 运行结果截图:
3、 遇到的问题:
(1 )把所有的工作做好后,提交了拓扑,运行代码。发生了错误1 ,如下:
解决:原来是因为依赖版本要统一的问题,最后将版本修改一致后,成功解决。
(2) 发生了错误2 ,如下:
解决:原来是忘记开hbase 中的HMaster 和HRegionServer 。启动后问题成功解决。
http://shenzhen.offcn.com/