kafka+storm+hbase

kafka+storm+hbase实现计算WordCount。

(1)表名:wc

(2)列族:result

(3)RowKey:word

(4)Field:count

 

1、 解决:

1 )第一步:首先准备 kafka storm hbase 相关 jar 包。 依赖如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"http://maven.apache.org/POM/4.0.0"  xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"  xsi:schemaLocation= "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" >
   4.0 . 0
   com
   kafkaSpout
   0.0 . 1 -SNAPSHOT
   
    
        
             org.apache.storm
             storm-core
             0.9 . 3
        
        
             org.apache.storm
             storm-kafka
             0.9 . 3
        
        
             org.apache.kafka
             kafka_2. 10
             0.8 . 1.1
            
                
                     org.apache.zookeeper
                     zookeeper
                
                
                     log4j
                     log4j
                
            
        
        
             org.apache.hbase
             hbase-client
             0.99 . 2
            
                
                     org.slf4j
                     slf4j-log4j12
                
                
                     org.apache.zookeeper
                     zookeeper
                
            
        
         
       
 
          com.google.protobuf
 
          protobuf-java
 
          2.5 . 0
 
        
 
        
             org.apache.curator
             curator-framework
             2.5 . 0
            
                
                     log4j
                     log4j
                
                
                     org.slf4j
                     slf4j-log4j12
                
            
        
                                                                                    
           
             jdk.tools
             jdk.tools
             1.7
             system
             C:\Program Files\Java\jdk1. 7 .0_51\lib\tools.jar
             
         
    
  
    
        
             central
             http: //repo1.maven.org/maven2/
            
                 false
            
            
                 true
            
        
        
             clojars
             https: //clojars.org/repo/
            
                 true
            
            
                 true
            
        
        
             scala-tools
             http: //scala-tools.org/repo-releases
            
                 true
            
            
                 true
            
        
        
             conjars
             http: //conjars.org/repo/
            
                 true
            
            
                 true
            
        
    
 
    
        
            
                 org.apache.maven.plugins
                 maven-compiler-plugin
                 3.1
                
                     1.6
                     1.6
                     UTF- 8
                     true
                     true
                
            
            
                 maven-assembly-plugin
                
                    
                         jar-with-dependencies
                    
                    
                        
                            
                        
                    
                
                
                    
                         make-assembly
                         package
                        
                             single
                        
                    
                
            
        
    

 

 

(2) kafka 发来的数据通过 levelSplit bolt 进行分割处理,然后再发送到下一个 Bolt 中。代码如下:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package  com.kafka.spout;
 
import  java.util.regex.Matcher;
import  java.util.regex.Pattern;
import  backtype.storm.topology.BasicOutputCollector;
import  backtype.storm.topology.OutputFieldsDeclarer;
import  backtype.storm.topology.base.BaseBasicBolt;
import  backtype.storm.tuple.Fields;
import  backtype.storm.tuple.Tuple;
import  backtype.storm.tuple.Values;
  
public  class  LevelSplit  extends  BaseBasicBolt {
  
     public  void  execute(Tuple tuple, BasicOutputCollector collector) {
         String words = tuple.getString( 0 ).toString(); //the cow jumped over the moon
         String []va=words.split( " " );
         for (String word : va)
         {
             collector.emit( new  Values(word));
         }
         
     }
     
     public  void  declareOutputFields(OutputFieldsDeclarer declarer) {
         declarer.declare( new  Fields( "word" ));
     }
 
}

  

(3) 将levelSplit 的Bolt 发来的数据到levelCount 的Bolt 中进行计数处理,然后发送到hbase (Bolt )中。代码如下:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
package  com.kafka.spout;
 
import  java.util.HashMap;
import  java.util.Map;
import  java.util.Map.Entry;
 
import  backtype.storm.topology.BasicOutputCollector;
import  backtype.storm.topology.OutputFieldsDeclarer;
import  backtype.storm.topology.base.BaseBasicBolt;
import  backtype.storm.tuple.Fields;
import  backtype.storm.tuple.Tuple;
import  backtype.storm.tuple.Values;
  
public  class  LevelCount  extends  BaseBasicBolt {
     Map counts =  new  HashMap();
 
     public  void  execute(Tuple tuple, BasicOutputCollector collector) {
         // TODO Auto-generated method stub
         String word = tuple.getString( 0 );
         Integer count = counts.get(word);
         if  (count ==  null )
             count =  0 ;
         count++;
         counts.put(word, count);
 
         for  (Entry e : counts.entrySet()) {
             //sum += e.getValue();
             System.out.println(e.getKey()
                                 "----------->"  +e.getValue());
         }
         collector.emit( new  Values(word, count));     
     }
 
     public  void  declareOutputFields(OutputFieldsDeclarer declarer) {
         // TODO Auto-generated method stub
          declarer.declare( new  Fields( "word" "count" ));
     }
}

  

(4) 准备连接 kafka hbase 条件以及 设置整个拓扑结构并且提交拓扑。代码如下:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
package  com.kafka.spout;
  
import  java.util.HashMap;
import  java.util.Map;
 
import  com.google.common.collect.Maps;
 
//import org.apache.storm.guava.collect.Maps;
  
import  backtype.storm.Config;
import  backtype.storm.LocalCluster;
import  backtype.storm.StormSubmitter;
import  backtype.storm.generated.AlreadyAliveException;
import  backtype.storm.generated.InvalidTopologyException;
import  backtype.storm.spout.SchemeAsMultiScheme;
import  backtype.storm.topology.TopologyBuilder;
import  backtype.storm.tuple.Fields;
import  backtype.storm.utils.Utils;
import  storm.kafka.BrokerHosts;
import  storm.kafka.KafkaSpout;
import  storm.kafka.SpoutConfig;
import  storm.kafka.ZkHosts;
   
public  class  StormKafkaTopo {
     public  static  void  main(String[] args) {
                   
         BrokerHosts brokerHosts =  new  ZkHosts( "zeb,yjd,ylh" );
         SpoutConfig spoutConfig =  new  SpoutConfig(brokerHosts,  "yjd" "/storm" "kafkaspout" );
         Config conf =  new  Config();  
         spoutConfig.scheme =   new  SchemeAsMultiScheme( new  MessageScheme());   
         
         SimpleHBaseMapper mapper =  new  SimpleHBaseMapper();
         mapper.withColumnFamily( "result" );
         mapper.withColumnFields( new  Fields( "count" ));
         mapper.withRowKeyField( "word" );
         
         Map map = Maps.newTreeMap();
         map.put( "hbase.rootdir" "hdfs://zeb:9000/hbase" );
         map.put( "hbase.zookeeper.quorum" "zeb:2181,yjd:2181,ylh:2181" );
         
         // hbase-bolt
         HBaseBolt hBaseBolt =  new  HBaseBolt( "wc" , mapper).withConfigKey( "hbase.conf" );
 
         conf.setDebug( true );
         conf.put( "hbase.conf" , map);
           
         TopologyBuilder builder =  new  TopologyBuilder();
         builder.setSpout( "spout" new  KafkaSpout(spoutConfig));
         builder.setBolt( "split" new  LevelSplit(),  1 ).shuffleGrouping( "spout" );
         builder.setBolt( "count" new  LevelCount(),  1 ).fieldsGrouping( "split" new  Fields( "word" ));
         builder.setBolt( "hbase" , hBaseBolt,  1 ).shuffleGrouping( "count" );
         
         if (args !=  null  && args.length >  0 ) {
             //提交到集群运行
             try  {
                 StormSubmitter.submitTopology(args[ 0 ], conf, builder.createTopology());
             catch  (AlreadyAliveException e) {
                 e.printStackTrace();
             catch  (InvalidTopologyException e) {
                 e.printStackTrace();
             }
         else  {
             //本地模式运行
             LocalCluster cluster =  new  LocalCluster();
             cluster.submitTopology( "Topotest1121" , conf, builder.createTopology());
             Utils.sleep( 1000000 );
             cluster.killTopology( "Topotest1121" );
             cluster.shutdown();
         }          
     }
}

  

(5) 在kafka 端用控制台生产数据,如下:

 

 

2、 运行结果截图:

 

 

3、 遇到的问题:

(1 )把所有的工作做好后,提交了拓扑,运行代码。发生了错误1 ,如下:

 

 

解决:原来是因为依赖版本要统一的问题,最后将版本修改一致后,成功解决。

(2) 发生了错误2 ,如下:

 

 

解决:原来是忘记开hbase 中的HMaster 和HRegionServer 。启动后问题成功解决。

http://shenzhen.offcn.com/

请使用浏览器的分享功能分享到微信等