-
支持多种类型的决策变量,包括连续型、整数型、二进制型等。 -
支持多种内置或外部的求解器,包括CBC、GLPK、CPLEX、Gurobi等 -
支持导出和导入问题的LP格式或MPS格式 支持基于字典或列表的创建规划问题,适用于大规模的问题 。 支持对问题进行修改和重新求解,以实现灵活的建模 pulp可以用于解决各种实际应用中的优化问题,例如生产计划问题、运输分配问题等。
pulp基础介绍
导入pulp模块 创建一个LpProblem对象,
指定问题的名称和目标函数的方向(最大化或最小化) 创建一些LpVariable对象,
指定变量的名称、类型和上下界
添加目标函数和约束条件到LpProblem对象中
调用solve方法求解问题,并打印结果
例如,如果你想求解这样一个线性规划问题,可以按照如下代码实现:
import pulp
# 创建一个问题,名为"example",目标是最小化
prob = pulp.LpProblem('example', sense=pulp.LpMinimize)
# 创建两个变量,x和y,取值范围为[0, +∞)
x = pulp.LpVariable('x', lowBound=0)
y = pulp.LpVariable('y', lowBound=0)
# 添加目标函数
prob += x + 2 * y
# 添加约束条件
prob += x + y <= 4
prob += x - y >= 1
# 求解问题
status = prob.solve()
# 打印结果
print(pulp.LpStatus[status]) # Optimal
print(pulp.value(x)) # 1.5
print(pulp.value(y)) # 2.5
print(pulp.value(prob.objective)) # 6.0
pulp解决TSP问题
TSP问题介绍
导入基础数据
# 导入pulp库
import pulp
# 定义城市节点和距离矩阵
dist = [[0, 10, 15, 20, 25, 30],
[10, 0, 35, 25, 20, 15],
[15, 35, 0 ,30 ,35 ,20],
[20 ,25 ,30 ,0 ,15 ,30],
[25 ,20 ,35 ,15 ,0 ,35],
[30 ,15 ,20 ,30 ,35 ,0]]
cities=["城市"+str(i) for i in range(len(dist[0]))]
设定变量和目标
# 创建一个LpProblem对象,指定名称和目标类型
prob = pulp.LpProblem("TSP Problem", pulp.LpMinimize)
# 创建一个二维字典来存储决策变量x_ij,表示是否从i到j
x = pulp.LpVariable.dicts("x",((i,j) for i in cities for j in cities),cat=pulp.LpBinary)
# 添加目标函数,即最小化总距离
prob += pulp.lpSum(dist[cities.index(i)][cities.index(j)] * x[(i,j)]for i in cities for j in cities)
约束条件1:每个节点只能被访问一次
# 添加约束条件1:每个节点只能被访问一次
for i in cities:
prob += pulp.lpSum(x[(i,j)] for j in cities) == 1
约束条件2:对角线不能选到
# 添加约束条件2:对角线不能选到
for i in cities:
prob += x[(i,i)] ==0
约束条件3:每个节点只能被离开一次
# 添加约束条件3:每个节点只能被离开一次
for j in cities:
prob += pulp.lpSum(x[(i,j)] for i in cities) == 1
约束条件:消除子回路(MTZ方法)
# 添加约束条件4:消除子回路(使用Miller-Tucker-Zemlin方法)
u = pulp.LpVariable.dicts("u", cities[1:], lowBound=0, upBound=len(cities)-1,cat=pulp.LpInteger)
for i in cities[1:]:
for j in cities[1:]:
if i != j:
prob += u[i] - u[j] + (len(cities) -1) * x[(i,j)] <= len(cities) -2
求解,并整理打印结果
# 求解问题,并打印结果
status = prob.solve()
print("Status:", pulp.LpStatus[status])
print("总距离:", pulp.value(prob.objective))
data={}
dis_data=[]
for i in cities:
for j in cities:
if pulp.value(x[(i,j)]) == 1:
data[i]=j
route=['城市0']
while len(route) route.append(data[route[-1]])
route=route+['城市0']
print(route)
完整代码
导入pulp库
import pulp
# 定义城市节点和距离矩阵
dist = [[0, 10, 15, 20, 25, 30],
[10, 0, 35, 25, 20, 15],
[15, 35, 0 ,30 ,35 ,20],
[20 ,25 ,30 ,0 ,15 ,30],
[25 ,20 ,35 ,15 ,0 ,35],
[30 ,15 ,20 ,30 ,35 ,0]]
cities=["城市"+str(i) for i in range(len(dist[0]))]
# 创建一个LpProblem对象,指定名称和目标类型
prob = pulp.LpProblem("TSP Problem", pulp.LpMinimize)
# 创建一个二维字典来存储决策变量x_ij,表示是否从i到j
x = pulp.LpVariable.dicts("x",((i,j) for i in cities for j in cities),cat=pulp.LpBinary)
# 添加目标函数,即最小化总距离
prob += pulp.lpSum(dist[cities.index(i)][cities.index(j)] * x[(i,j)]for i in cities for j in cities)
# 添加约束条件1:每个节点只能被访问一次
for i in cities:
prob += pulp.lpSum(x[(i,j)] for j in cities) == 1
# 添加约束条件2:对角线不能选到
for i in cities:
prob += x[(i,i)] ==0
# 添加约束条件3:每个节点只能被离开一次
for j in cities:
prob += pulp.lpSum(x[(i,j)] for i in cities) == 1
# 添加约束条件4:消除子回路(使用Miller-Tucker-Zemlin方法)
u = pulp.LpVariable.dicts("u", cities[1:], lowBound=0, upBound=len(cities)-1,cat=pulp.LpInteger)
for i in cities[1:]:
for j in cities[1:]:
if i != j:
prob += u[i] - u[j] + (len(cities) -1) * x[(i,j)] <= len(cities) -2
# 求解问题,并打印结果
status = prob.solve()
print("Status:", pulp.LpStatus[status])
print("总距离:", pulp.value(prob.objective))
data={}
dis_data=[]
for i in cities:
for j in cities:
if pulp.value(x[(i,j)]) == 1:
data[i]=j
route=['城市0']
while len(route) route.append(data[route[-1]])
route=route+['城市0']
print(route)

dist = [[0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,468, 776, 662],
[548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,1016, 868, 1210],
[776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,1130, 788, 1552, 754],
[696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,1164, 560, 1358],
[582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,1050, 674, 1244],
[274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,514, 1050, 708],
[502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,514, 1278, 480],
[194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,662, 742, 856],
[308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,320, 1084, 514],
[194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,274, 810, 468],
[536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,730, 388, 1152, 354],
[502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,308, 650, 274, 844],
[388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,536, 388, 730],
[354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,342, 422, 536],
[468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,342, 0, 764, 194],
[776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,388, 422, 764, 0, 798],
[662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,536, 194, 798, 0]]
